

ASME® 2021 Joint Rail Conference

RTD and JRC: 100 Years of Tracking and Promoting Railroading Progress

VIRTUAL CONFERENCE APRIL 20–21, 2021

Introduction

- Method to estimate commuter rail station-to-station origin-destination (OD) matrix at hourly level, separately and independently for each day. Features:
 - 1. Handles multi-pack pay-per-ride fare instruments not requiring electronic validation
 - 2. Infers directionality for direction-agnostic ticket-types
 - 3. Sensitive to day-to-day changes in travel conditions (e.g. weather, special events, etc.)
 - 4. Deals with a cliff-edge sudden change in demand (e.g. COVID-19 lockdown)
 - 5. Estimate utilization patterns of unlimited-ride tickets
 - 6. Provides output in terms of whole numbers of passengers
 - 7. Allocates hourly traffic to each train-start (i.e. schedule number)

Data Description

- Multiple sales channels w/ different fare media and systems:
 - 1. Self-service ticket vending machines
 - 2. Mobile tickets (eTix)
 - 3. Mail order tickets
 - 4. Onboard ticket sales
- More than sixty fare types:
 - 1. Only four basic categories necessary:
 - a) monthly commutation,
 - b) weekly commutation,
 - c) ten-trip, and
 - d) à-la-carte single/return tickets.
 - 2. Pay-per-Ride (PPR) tickets are further subdivided into peak, off-peak, intermediate, child, senior, family fare, and special discount schemes

"Lookback Windows"

- Key Assumptions:
 - 1. eTix passengers use their tickets approximately the same way as paper ticket holders
 - 2. Paper singles purchased immediately prior to use
- PPR tickets are inventories of trip-coupons held by customers, cancelled upon fulfillment of transportation:
 - 1. 90% of Ten Rides consumed within ten weeks
 - 2. 97.5% of Round-Trip return portions used within seven days
- eTix data provides distribution of "days each ticket is held by the customer"
- Number of rides taken today = sum product of {probability of usage after N days}, and {number of tickets sold exactly N days ago}

"Weeks Since Purchase" Module

- Ten-trips are utilized by customers having occasional needs to travel:
 - 1. Date and time of travel driven by customer business
 - 2. Not how long they have possessed fare media
 - 3. But customers try to use tickets sooner rather than later
- Compromise model:
 - 1. Compute paper tickets expected to be used during current week, using distribution of weeks since purchase
 - 2. Sprinkles rides this week using combined distribution of day-of-week and time-of-day, by ticket subtype
- Model does not use origin and destination stations:
 - 1. Time of travel is not significantly affected by geography

"48-Hour/Period Return" Module

- Round-trip passengers fall in two distinct markets:
 - 1. day-return market: leave early and come back late
 - 2. period-return market: two trips with independent departure times
- Travel patterns by outward trip hour:
 - 1. Held steady for Mondays through Thursdays
 - 2. Distinct pattern is seen each for Friday, Saturday, and Sunday.
 - Peter out after about 48 hours.
- Segmented approach:
 - 1. Tickets bought today and yesterday (48-hour model):
 - a) distribute return-time based on day-of-week and time-of-day when the ticket was sold
 - 2. Tickets purchased earlier than yesterday (period return model):
 - a) apply basic "days away" logic by day-of-week to determine fraction of tickets used today
 - b) sprinkle daily used return trip hours distribution of all return portions where passengers stayed for at least two days

Return Trip Hour by Outward Trip Hour (Tue)

"Day-of-Week Zone Hour" Model

Trends observed in the data:

- 1. Geography (travel distance) does not affect unlimited-ride ticket utilization
- 2. Number of weekdays and holidays in each month a significant driver of monthly ticket utilization
- 3. Morning commutes begin earlier for those living further away from downtown
- 4. On the system's extremities, afternoon trips are tied to specific train departures

• Two-stage problem:

- 1. Given day-of-week and month (e.g. Friday in January), compute fraction of monthly tickets expected to be "seen"
- 2. Given ticket is seen today, how many trips do we expect that ticket to redeem? Sprinkle rides amongst the 24-hour day based on relevant hourly distributions for that {day-of-week, and origin and destination fare zones}

Other Required Processing

Model Structure:

- 1. eTix sales and activation data are used to generate distributions
- 2. Separately, sales from various non-mobile channels were combined, summarized, and multiplied by these distributions

"Fractional Passenger Dithering Process"

1. Small ODs at unsociable hours have sparse demand; assigns probabilistically estimated marginal passenger to specific hour

• Directionality Issue:

- 1. Multi-ride tickets and passes are valid for travel in either direction
- 2. Rdership census data "frataring" (iterative proportional fitting) algorithm synthesizes directionally-correct train-level OD matrix
- 3. Fraction used allocate observed passengers, in each origindestination market for each hour:
 - a) Preserves daily passenger-count and ticket-type information by hour
 - b) Reallocates fraction of inbound/outbound passengers by hour

Origin-Destination Matrix Results

ASME® 2021 Joint Rail Conference Virtual | April 20–21, 2021

Verification and Validation

- Validating virtually impossible (normal for "big data").
- This algorithm type particularly problematic:
 - 1. Estimated data (not collected by equipment)
 - 2. Large manual sample impractical
- Two approaches:
- Compare with ridership "Census":
 - 1. Model internally consistent
 - 2. Some deviation from survey data, but R²>0.93
 - 3. Visible deviations could be survey error!
- Compare with "official" counts:
 - 1. Official counts higher, but assumptions differ

OD Survey (2017) versus AFC Model (2019)

- Model design uses eTix behaviour pattern to estimate paper ticket usage
 - Calibration must be "flushed" for post-COVID travel conditions
- Next steps:
 - 1. Connect OD matrix to electronic train schedule data and flow traffic over network
 - 2. Approximately one-third of electric railcar fleet now fitted with airbag loadweigh sensors
 - 3. Ongoing work (by others) to use computer vision to count passengers in real time
 - 4. When complete, these direct observations will be the best data on coach occupancies
- Onboard "counts" provide no market intelligence, e.g.
 - Customers' ODs, transfers, ticket types, nights' stay, repeat system usage, trip purpose, or passengers travelling together
- Ticket data's role in inferring train loadings will necessarily become more limited
- This algorithm useful to railroads having advanced ticketing systems, but chose not to install onboard cameras with 100% coverage

ASME® 2021 Joint Rail Conference

RTD and JRC: 100 Years of Tracking and Promoting Railroading Progress

VIRTUAL CONFERENCE APRIL 20–21, 2021

